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1. Summary. This paper starts from a (ptq)-variate normal population 

(p < q) with a p.d. dispersion matrix consisting of submatrices 

E-J-ICP 
x p); ^po^ x ^'  ^12^p x ^ which stand respectively for the 

dispersion matrix of the p-set, the q-set and that between the p-set 

and the q-set, and then defines; in a natural manner, the matrix of 

regression of the p-set on the q-set, in the form L    i^"   . This matrix 

is denoted by £(p x q) ana a bilinear function d'(l x p)P(p x q)d_(q x l) 

is considered where d,(p x l) and d?(q x l) are two arbitrary vectors, 

each of unit modulus. Simultaneous confidence bounds are given on all 

such bilinear compounds d'gd with a joint confidence coefficient greater 
•~± ~d 

than or equal to a prea signed level. For this purpose certain results 

and techniques are used which were discussed in previous papers /~1,2,5«_7 

2. Introduction. We recall the confidence statement £~1,   (<-.'i.k}Jt 

with a confidence coefficient 1-0: 

t  (n-2) £    B t  (n-2) 0 J     « 
(2.1)    b  -    ° (1  - r^)      -i<p<b + -£~fl      ?*)      ••/*       , 

f~^T 82 /T'vT 2 

where 3 (which is now a scalar) stands for the pooula.,i.;: ..egression 

of x on x (where x    and x- have a bivariate normal, distribution), 

b for the sample regression (ic a IN—idom sample of size n > 3), r 
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for the sample correlation, s.. ana 8p for the two sample standard deviations 

and t for the upper s/2-point of tb* t-distribution with D.F.(n-2). 

We also note that 

(2.2) b = rS;L/82 = rs^g/Bg and P = po^/^ , 

where p, o , and o stand respectively for the population correlation 

coefficient and the two standard deviations. 

Denoting by C(M) the characteristic: root of a p x p matrix (whose 

elements are real or complex numbers) we recall also / 2, (1.2)_/ that, 

if A(P x q.) and B(q x p) are two such matrices, then 

(2.3) C(AB) = C(BK), 

meaning thereby that any non-zero root of^B)is also a non-zero root of 

(BA) and vice versa. 

We also note that 

(2 A)   tr (AB) = tr (BA) . 

We further recall £2,   (2.2.U)_7 that if A and B are two p x p hermitian 

matrices, one of which, say A, is p.d. and the other, i.e., B, at least 

p.s.d., then, denoting by c   and c .  the largest and the smallest " ' ' max     mm      ° 

characteristic roots, we have 

(2.5) c . (A) c . (B) < all c (AB) < c  («) c  (B>. minv ' mins  —      v   - maxv ' maxv ' 

We next recall J_  3, first paragraph of section oj  that 

(2.6) "If Ev   then E^1  \ " E^ E^   > P(E][) < P(Eg). 



We now start £~1,  section 6.2_7 with a random sample of size n  ( > p+q;  p < q) 

from a \p*(i)-vaxiate uOi'iual population, and next reduce for tins «    rrtaa y^ct     Ql 

(n-1) 

SU        S^ * 

S12 S22) 

K\(Yi Y
2)      n- 

u2; P 

n-1 

1 

where S    ,  3      and S      stand respectively for the  3ample dispersion sub- 

matrices of the p-set,  the q-set and that between the p-sev and the q-set 

and where Y    and Y    have the p.d.f. 

(2.7)       const. exp.J_    ~-g tr 
11 12 

12 22 u, di    ty 

We next recall _/~l, section 6.2_7 that there exist non-singular u. (p x p) 

and (i?(q x q) 6uch that 

(2.8)  ^(P x p) = uL(p x p) |i£(p x p), ^(q x o) = u2(q x q) u£(q x q) 

and £12^P X q^ = ^P X p^ ^ITS)        °^  ^2^ X q^  ' 

p q-p 

where Dr— stands for a diagonal matrix the squares of whose diagonal 

elements are the (all non-negative) characteristic roots of the matrix 

EC-, ^12^22^12 ^i,e*' ^e squar£a of the population canonical correlations 

between the p-set and the q-set). As in £~1,   section 6.2 J,  denoting by 

I(m) an m x m identity matrix, we have 
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(2.9)    [ 1 

v   12 22/ 

•i    r /"i   °\/*<p> 

0 

^      o is 

Ji-e Cte °A 
0 

\ 
xwj 

/° rT-0 

-TO-Ho   ,J 

o    \        /^      o^]-1 

^1 
A o 

1(4) o n£ 

J 

/"f1 °^ D 

1°    *7 
i/i -0 

0 

0 \   ll 
1(4) 

J 1/1 -0 

Going back to (2.7) and using (2.4) we have now 

1407 •W    / 

Ka) 

u, o 

V° ^2   / 

(2.10)      tr 

1. L 
11 12 

12 22 

^V1 
'M 

Kc y0 

= tr j l/l  -Q 

2/ 

:: ^T57i -e   ' 
1(4) 

0 ni_i) I -ID \   l(q) 

/l-G 

tr 

(Z. 

\Z2 

o  \/YJ, 

^A1*/ 
(Y{ 

I 

/ 

(zi    zi>   , 

Y2> 



-> 

where 

(2.11) Zx = D      u^1    Yx  - (D     

Jl/1 -0 JCD/l^Q 
0) ^2      x

2; 

Z2 = ^Y2     ' 

Thus  it  is easy to check from (2.7),   (2.10) and (2.11)  that  (Z-, Zg) 

have the p.d.f. 

(2.12)    const,  exp.     -•§ tr 

Zl\ 
(4     zp , 

Consider now, for any two arbitrary non-null vectors a (p x l) and 

ap(q x 1) and for a fixed positive Qn,  the statement 

(2.13)     (a[ \ 1'2 a2)' 
— < 0, 

(Si 2X Z« • )(a. Z8 Z» a2) 

whi~.h can be written in terms of ¥ and Y as 

C*\  D 

(2.lM 

where 

JT/i -6 
U;VW3 -i: 'r2r2 (° - f^ffi"1  ^2-7 

4o/i -e 
(a2Hp1Y2Y2ii2":La2) (a^QQ' a^) 

<°0 

(2.15) Q - D n'V   -(D 0]   jA       . 

Now  putting 



-b- 

(2.16) bjU x p) = a^ D       u'1 and b£(l x qj = a^n"
1 , 

and using (2.8) and (2.6), we check that (2.1U) reduces to 

2 

f*{  (YiY2 " ^Y2Y2) ±sJ 
(b2Y2Y2^) Ai(Y!-PY2)(

Yi " Y^') bgj 
^°0 

or 

A{(s12 - PS'^b^2 

(^S22b2) A^n-V' - ^Si2+pG22J3!^l-7 
^ °0 

wnere 

(2.17)  P(p x *) = u^ o) MJ1 = V22 • 

P defined by (2.17) can be appropriately called the matrix of population 

regression of the p-set on the q.-set and it is the only set of population 

parameters that occurs in the statement (2.17)• 

3. Confidence bounds on the regression matrix 6. 

It is well known £"'lj  that the statement (2.17), for all arbitrary 

non-null b, and bp, is exactly equivalent to 

(3.1) all e.'s < 9Q or 0p < QQ, 

where © 's (i - 1, 2,   ..., p; 0 < 9.^ < ... < © < l) are the roots of 

the determinantal equation in ©: 

(3.2) |e(s11-s12p--psi2+ps22p.) - (s12-?s22)s2J(si2-s22p.)| = o. 



How put K - 9/l - Q; so tha*. we have from (3.2), the determinantal 

equation in K 

(>.3) I Msn-S;i5s^si2) - (s12s-; - P)s22(s^si2 - p.)| =0. 

The statement (3.1) can now be replaced by the statement that 

(3«M the largest characteristic root < ©0/l - ©0; 

i.e., 

(3.5) all c /~(Sirsi2
S22Si2r:i(B-p)S22(B,"p,)-7- Q0/(l"Q0' ' 

where 

(3.6) B(p x a) - S12S2^ , 

which may be appropriately called the matrix of sample regression of 

the p-set on the q-set. 

We note that (3.^)  \     (3-1)  V (2.13), so that © is the largest 

characteristic root of the matrix (Z Z^'^Z ZptZ^J'^Z^), where 

(Z.,, Z ) have the p.d.f. (2.12). The joint distribution of these central 

6 's, and also of the largest root ©^ being known, all that we have to do 
i P 

to make (3-5), i.e., (3.1), i.e., (2.13), a simultaneous confidence state- 

ment with a joint confidence coefficient 1 - C is to choose 9. = © (p,q,n-l) 

where the quantity on the right hand side is defined by 

(3.7) P (central © > ©J = a. 
p -- 0 

Substituting now ©„(p, q, n-l) (to be sometimes denoted more simply 

by ©_ ) for © in (3.5), we have a simultaneous confidence statement with a 

joint confidence coefficient 1 - a: 
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Now applying (2.3), (2.5) and (2.6) (in the same manner as in 

£~3_J),  we have from (3.5), now with a joint confidence coefficient 

> 1 - a, the following simultaneous confidence statement 

(3.8) all c C(B - PHB' - 0')J < A. ^ax^ll-S12S22Si2} X W8^' 

Now note that ^(S^) = l/cBln(S22), 

cmax^Sll-S12S22Si2) < CmaX^U) <W(I ' SURi2S22Si2
) and 

cmax(I--SnS12S223i2^  = 1 ' Cmin^nS12S22S12) ' 

Using these, we check that (3.8)  can he replaced by the following (with 

a confidence coefficient > 1 - a): 

(3.9) ail c  T(B - &)(B'   - P')_7 < JL   Z"1 " cmin(S"llS12S22S12)-7 

we next recall the following two well-known results  (repeatedly used in £~1_J)'. 

(3.10) all c(M) < g (for a p x p real matrix M with real roots) 

——A     d'   (1 x p) M(p x p) d (p x 1)   (for all arbitrary unit vectors d^Wand 

(3.U)    x'   U x l)  *U x 1)  < h(  > 1)  \   | x2(l x q)  d2(q x  l)|  < /T" 

(for all arbitrary unit vectors d ). 

Applying (3.10) and (3-11) to (3-9) we have (with a joint confidence 

coefficient > 1 - ot) the following simultaneous confidence statement (for 
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all arbitrary unit vectors d.(p x l) and d_(q x 1) )j 

(3.12) I dj (B - p) dJ < /"right hand side of (3.9)_/  .. 

or ultimately 

(3.13) d{ Bd2 - /TT < dj 6d2 < dxBd2 + /T" , 

vhere 

(3.1U)   E . /"od/(i - 0^)7 z"i - Wsnsi2s22si2>-7 ^(Sn)/^^^) J. 

A set of simultaneous confidence bounds on just the elements (3  of the 
*• J 

P-matrix would be a subset of the bounds on the total set d'Pd0. It is 

worthwhile to check that if p = q. = 1, (3.13) reduces, as it should, to 

(2.1). .-i-lso if p = 1, we should have another special case of (3.13) giving 

a set of simultaneous confidence bounds on all linear functions of the partial 

regressions of one variate on several others. Thus, in several ways, (3-13) 

seems to be an appropriate generalization of (2.1). 
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